18.2.0 ANALOGUE ELECTRONICS II

18.2.01 Introduction

Analogue electronics is a study that deals with electronic systems with a continuously variable signal. This module unit is intended to impart knowledge, skills and attitudes required to enable the trainee understand the principles of operations of various electrical circuits, equipment and devices in the industries. Trainees will appreciate and apply the knowledge and skills learned in Analogue Electronics I of module I.

18.2.02 General Objectives

At the end of this module unit, the trainee should be able to:

- a) Understand the characteristics of special semi-conductor devices
- b) Understand the operation of electronic circuits
- c) Apply semi-conductor devices

18.2.03 Module Unit Summary and Time Allocation

Analogue Electronics II

Analogue Electronics II				
Code	Module	Content	Time	
	Unit	2	Hrs	
18.2.1	Special Semi	Principles of operation	12	
	Conductor 🧷	Applications of special		
	Devices	semiconductor devices	ļ	
18.2.2	Amplifiers	RC coupled amplifiers	16	
		Analyses of linear amplifiers		
		Amplifier gain		
		Power amplifier		
		Tuned amplifiers		
1		Wideband amplifiers		
		Amplifier distortion		
18.2.3	Operational	Direct Coupled amplifiers	16	
	Amplifiers	Differential amplifiers		
	(Op-Amp)	OP-amp characteristics		
		OP-amp circuits		
18.2.4	Feedback	Feedback principle	10	
		Feedback equations		
		Effects of negative feedback		
		Feedback connections		
18.2.5	Sinusoidal	Concept of oscillators	10	
	Oscillators	Oscillation requirements		

Total Time			88
16.2.7	Electronics	 Lasers and masers Properties and drive requirements Photo devices Applications 	12
18.2.6	Wave Shaping and Pulse Generating Circuits Opto-	 Oscillator circuits Wave shaping Pulse generation Theory of opto electronics	12

easylvet.com

18.2.1 SPECIAL SEMI CONDUCTOR DEVICES

Theory

- 18.2.1T0 Specific Objectives
 By the end of the submodule unit, the trainee should be able to:
 - explain principles of semi conductor devices
 - state the application of semi conductor devices

Content

- 18.2.1T1 Principles of semi conductor devices
 - i) Varactor diode
 - ii) UJT
 - iii) Programmable UJT
 - iv) Silicon controlled rectifiers (SCRS)
 - v) Silicon Controlled Switch (SCS)
 - vi) Diac
 - vii) Triac
- 18.2.1T2 Application of semi conductor devices

Practice

- 18.2.1P0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - a) identify device terminals
 - b) verify device characteristics

Content

18.2.1P1 Identification of terminals

18.2.1P2 Verification of characteristics

18.2.1C Competence

The trainee should have the ability to: connect and test a special semi conductor device

Suggested teaching/Learning Activities

- Illustrations
- Demonstration
- Note taking
- Observation
- Practical exercise

Suggested Teaching/Learning Resources

- i) Various special semi conductor devices
- ii) Breadboard
- iii) Circuit board
- iv) Power supply
- v) Data/catalogue books
- vi) Internet

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests
- Project

18.2.2 AMPLIFIERS

Theory

- 18.2:2T0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - a) explain the performance of RC coupled amplifiers

- b) analyze the frequency response of linear amplifiers
- c) derive the gain of an amplifier
- d) describe the operation of power amplifiers
- e) describe the operation of tuned amplifiers
- f) describer the operation of wideband amplifiers
- g) explain distortion in amplifiers

Content

- 18.2.2T1 RC coupled amplifiers
 - i) Biasing
 - ii) Stability
 - iii) Operating Conditions
- 18.2.2T2 Frequency response low frequency
 - i) Mild-band frequency
 - ii) High frequency
- 18.2.2T3 Gain of amplifiers
 - i) Graphical methods
 - ii) H-parameter analysis
- 18.2.2T4 Power amplifiers
 - i) Classes
 - ii) Efficiency
 - iii) Matching
 - iv) Push-pull
- 18.2.2T5 Tuned amplifiers
 - Tuned circuits
 - ii) Response curves
 - iii) Single tuned
 - iv) Double tuned
 - v) Stagger tuned
- 18.2.2T6 Wide band amplifiers
 - i) Common base
 - ii) Cascade
 - iii) Frequency compensation
 - iv) Applications
- 18.2.2T7 Distortion in amplifiers
 - i) Amplitude distortion
 - ii) Harmonic distortion

- iii) Frequency distortion
- iv) Phase distortion
- v) Non-linear distortion

Practice

- 18.2.2P0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - a) construct amplifiers
 - b) verify amplifier performance

Content

- 18.2.2P1 Construction of amplifiers
- 18.2.2P2 Verification of permanence of amplifiers

18.2.2C Competence

The trainee should have the ability to: ability to construct and verify the performance of an amplifier

Suggested teaching/Learning Activities

- Illustration
- Demonstration
- Note taking
- Observation
- Practical exercise

Suggested teaching/Learning Resources

- i) Assorted electronic components
- ii) Power supply
- iii) Breadboard/circuit board
- iv) Connecting lauds/wire
- v) Oscilloscope
- vi) Signal generators
- vii) Multimeter

Suggested Evaluation Methods

- Oral tests

- Timed written tests
- Assignments
- Timed practical tests
- Project
- Project presentation

18.2.3 OPERATIONAL AMPLIFIERS

Theory

- 18.2.3T0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - a) describe operation of direct coupled amplifiers
 - b) explain the operation of differential amplifier
 - state characteristics of operational amplifiers
 (Op-amps)
 - d) analyse various operational amplifier circuits

Content

- 18.2.3T1 Direct coupled amplifiers circuit
 - limitations
- 18.2.3T2 Differential amplifier
 - i) Common Mode
 - ii) Differential Mode
 - iii) Common Mode Rejection Ratio (CMRR)
- 18.2.3T3 Characteristics of Op-amps
 - i) Input resistance
 - ii) Output reistance
 - iii) Voltage gain
 - iv) Badnwitdth
 - v) Response time
- 18.2.3T4 Analysis of Op-amp circuits

- i) Inverting and noninverting amplifier
- ii) Subtractor
- iii) Adder
- iv) Differentiator
- v) Integrator
- vi) Filters
- vii) Oscillators
- viii) Comparators

Practice

- 18.2.3P0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - a) assemble and operate op-amp circuits
 - b) test o-amp circuits

Content

- 18.2.3P1 Assembling and operating o-amp circuits
- 18.2.3P2 Testing of op-amp circuits
- 18.2.3C Competence
 The trainee should have the ability to:
 - i) Assemble and operate op-amp circuits
 - ii) Test op-amp circuits

Suggested teaching/Learning Resources

- Op-amp IC
 - Circuit/bread board
 - Power supply
- Oscilloscope
- Function generator
- Multimeter

Suggested teaching/Learning Activities

- Illustration
 - Demonstration

- Note taking
- Observation
- Practical exercise
- Calculations
- Project work

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests
- Project

18.2.4 FEEDBACK

Theory

18.2.4T0 Specific Objectives By the end of the sub-module unit, the trainee should be able to:

- explain principles of positive and negative feedback
- b) derive feedback equations
- c) explain effects of negative feedback on amplifier performance
- d) describe various feedback connections

Content

- 18.2.4T1 Feedback principles
- 18.2.4T2 Feedback equations
- 18.2.4T3 Effects of negative
 - i) Feedback
 - ii) Gain
 - iii)Stability
 - iv) Noise and distortions
 - v) Bandwidth
 - vi) Input and output impedances

18.2.4T4

Feedback

Connections

- ii) Voltage shunt
- iii) Current shunt
- iv) Practical amplifier circuits

PRACTICE

18.2.4P0 Specific Objectives By the end of the sub-module unit, the trainee should be able to:

- a) verify the performance of negative feedback amplifiers
- b) construct negative feedback amplifiers

Content

- 18.2.4P1 Verify performance of negative feedback amplifiers
- 18.2.4P2 Construct negative feedback amplifiers

18.2.4C Competence

The trainee should have the ability to:

- i) Construct feedback amplifiers
- ii) Verify performance of feedback amplifiers

Suggested teaching/Learning Resources

- Assorted electronic components
- Power supply
- Circuit/bread board
- Oscilloscope
- Signal generators
- Multimeter
- Electronic toolkit

Suggested teaching/Learning Activities

- Illustration
- Demonstration
- Note taking
- Observation
- Practical exercise
- Calculations
- Project work

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests
- Project

18.2.5 SINUSOIDAL OSCILLATORS

Theory

- 18.2.5T0 Specific Objectives
 By the end of the submodule unit, the trainee should be able to:
 - a) explain the concept of oscillations
 - b) state requirements for oscillators
 - c) describe the operation of oscillator circuits

Content

- 18.2.5T1 Concept of oscillators Resonance
- 18.2.5T2 Requirements for oscillators
 - i) Feedback
 - ii) Impedance
 - iii) Positive feedback
- 18.2.5T3 Operation of oscillator circuits
 - i) Tuned collector
 - ii) Rc phase shift

- iii) Colpits
- iv) Hartley
- v) Crystal
- vi) Blocking
- vii) Derivation of frequency of oscillation

Practice

- 18.2.5P0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - verify performance of oscillator circuits
 - b) construct oscillator circuits

Content

- 18.2.5P1 Performance of oscillator circuits
- 18.2.5P2 Construction of oscillator circuits

18.2.5C Competence

The trainee should have the ability to:

- i) Construct oscillator circuits
- ii) Verify performance of oscillator circuits

Suggested teaching/Learning Resources

- i) Assorted electronic components
- ii) Power supply
- iii) Oscilloscope
- iv) Multimeter
- v) Electronic toolkit
- vi) Circuit/breadboard
- vii) Connecting leads/wire

Suggested teaching/Learning Activities

- Illustration
- Demonstration
- Note taking
- Observation
- Practical exercise

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests
- Project

18.2.6 WAVE SHAPING AND PULSE GENERATING CIRCUITS

Theory

- 18.2.6T0 Specific Objectives

 By the end of the sub-module unit, the trainee should be able to:
 - a) describe operation of wave shaping circuits
 - b) explain the operation of pulse generating circuits

Content

- 18.2.6T1 Operation of wave
 - i) Shaping circuits
 - ii) Differentiators
 - iii)Integrators
 - iv) Integrators
 - v) Clipping circuits
 - vi) Clamping circuits
- 18.2.6T2 Pulse generating circuits (discrere and ICS)
 - i) Monostable multivibrator
 - ii) Astable multivibrator
 - schmitt trigger
 - blocking oscillator

Practice

18.2.6P0 Specific Objectives

By the end of the sub-module unit, the trainee should be able to:

- a) constructor waveshaping and pulse generating circuits
- verify performance of waveshaping and pulse generating circuits

Content

- 18.2.6P1 Construction of waveshaping and pulse generating circuits
- 18.2.6P2 Performance of waveshaping and pulse generating circuits

18.2.6C Competence

The trainee should have the ability to:

- i) Construct wave shaping and pulse generating circuits
- ii) Verify the performance of wave shaping and pulse generating circuits

Suggested teaching/Learning Resources

- i) Assorted electronic components (discrete/ICS)
- ii) Power supply
- iii)Oscilloscope
- iv) Circuit/breadboard
- v) Electronic toolkit
- vi) Function generator
- vii) Connecting leads

Suggested teaching/Learning Activities

- Illustration
- Demonstration
- Note taking

- Observation
- Practical exercise
- Calculations
- Project work

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests
- Project
- Project presentation

18.2.7 OPTO - ELECTRONICS

Theory

18.2.7T0 Specific Objectives By the end of the sub-module unit, the trainee should be able to:

- a) explain theory of optoelectronics
- b) explain principles of gaseous and solid lasers and masers
- c) describe the operation of photo devices
- d) explain drive requirements for the displays
- e) state application of photo devices

Content

- 18.2.7T1 Opto-electronic Theory
 - i) Interaction of radiation and matter
 - ii) Absorption, emission and transmission properties of matter
- 18.2.7T2 Principles of lasers and masers
 - i) Construction
 - ii) Operation

- 18.2.7T3 Operation of photodevices
 - i) Photo resistor
 - ii) Photo diode
 - iii) Photo transistor
 - iv) Photovoltaic cells
 - v) Avalanche diode
 - vi) PIN diode
- 18.2.7T4 Drive requirements for display
 - i) LED
 - ii) LCD
 - iii) Plasma
- 18.2.7T5 Applications

Practice

18.2.7P0 Specific Objectives
By the end of the submodule unit, the trainee should be able to construct a circuit using photo devices

Content

- 18.2.7P1 Circuit construction
 - i) Design
 - ii) Construction testing

18.2.7C Competence

The trainee should have the ability to:

- apply photo devices in electronic circuits
- ii) Diagnose faults in electronic devices

Suggested teaching/Learning Resources

- Photo devices
- Electrical and electronic tools and measuring instruments
- Electronic Bread board
- Copper strip boards

Suggested teaching/Learning Activities

- Illustration
- Demonstration
- Note taking
- Observation
- Practical exercise
- Calculations
- Project work
- Visits to industries

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests
- Project

easytyet.com